First Nine Weeks Instructional Map
DRAFT

Subject Pre-algebra
Grade 8

GLE 0806.3.4 (F.8.2, F.8.3) Translate among verbal, tabular, graphical and algebraic representations of linear functions.

Knowledge and Skills	Checks for Understanding \& Guiding Question(s)	Resources \& Instructional Practices	Assessments	Differentiated Instruction	Technology \& Additional Web-based Resources
Weeks 1-3 SPI 0806.3.4 (F.8.2, F.8.3) Translate between various representations of a linear function. Representations of Linear Functions Linear Functions Graph Match Activity includes activity cards Matching Linear Functions, Graphs, and Tables Match Equation with Graph Vocabulary Variable, algebra, algebraic expression, coordinate plane, origin, y-axis, x-axis, quadrants, ordered pair, x coordinate, y-coordinate, relation, domain, range, sequence term, arithmetic sequence, common difference, geometric sequence, linear, linear equation	0806.3.13 (EE.8.8.b) Represent situations and solve real-world problems using symbolic algebra. Guiding Question(s) What are the algebraic skills used to rewrite linear equations in various forms?	Glencoe TN Math Connects Course 3 Ch. 5 Lessons 1A p.268, 1B p. 270, 1C p. 275, 2A p. 281, 2B p. 282, 2C p.287, 2C p. 292 CCSS Extra Lesson 5: Compare Properties of Functions pp. 785-790 (Electronic TE CCSS Link) Routines/Activities - 5-Minute Check - Spiral Review pp. 280, 291, 297 - H.O.T. Problems pp. 274, 280, 286, 291, 297 - Test Practice Questions pp. 274, 280, 286, 291, 297 - PSI Problem Solving Investigation, p. 268 - Chapter Study Guide \& Review pp.326-329 - Hands-On Activity Tools \& Resources, pp. 6, 7, 20, 30, 23, 300; Variables and Expressions p. 132 - Quick Review Math Handbook, pp. 182, 252-256, 288-290, 291 - Foldables - Chapter Resource Masters	- Are You Ready for the Chapter? pp. 266 - Stop and Reflect pp. 280, 297, 311, 325 - Self Check Quiz - Mid-Chapter Check p. 298 - Lesson Quizzes (CRM) - Practice Chapter Test p. 330 - Preparing for Standardized Tests p. 331 - Test Practice p. 332 - Chapter Test CRM - Mastering TCAP Workbook practice by SPI TCAP Practice: Which equation is shown on the graph below? A $y=x-1$ C $y=x+1$ B $y=\frac{1}{2} x+2$ D $y=2 x-3$	Intervention: - Stanford Math (90 minutes/week) - Reteach Masters (Chapter Resource Masters) - Response to Intervention(TE) p. 266A - Differentiated Instruction Options (TE) p.267c, 281c, 299c, 314c - Quick Checks (TE) pp.269, 274, 280, 286, 291, 297, 305, 311, 319, 323 - Destination Math Enrichment: - Stanford Math (90 minutes/week) - Enrichment Masters (Chapter Resource Masters) - Differentiated Instruction Options (TE) p.267c, 281c, 299c, 314C - Quick Checks (TE) pp.269, 274, 280, 286, 291, 297, 305, 311, 319, 323 - .Destination Math	Teachers Edition CD Graphing Calculators Destination Math Examview Pro Stanford Math Browser Publishers Website: http://connectED.mcgraw- hill.com NCTM Website: http://illuminations.nctm.org www.internet4classrooms.com www.tnelc.org www.education.ti.com Interactive Manipulatives: http://nlvm.usu.edul STEM Resources: http://www.stemsources.com Informational Math Site (Power Points/Games) http://jc- schools.net/index.html http://softschools.com www.brightstorm.com http://exchange.smarttech.com www.discoveryeducation.com www.insidemathematics.org

First Nine Weeks Instructional Map
DRAFT

Subject Pre-algebra
Grade

LEE 0806.3.4 (F.8.2, F.8.3) Translate among verbal, tabular, graphical and algebraic representations of linear functions.

Knowledge and Skills	Checks for Understanding \& Guiding Question(s)	Resources \& Instructional Practice	Assessments	Differentiated Instruction	Technology \& Additional Web-based Resources
Weeks 1-3 SPI 0806.3.6 (EE.8.8.a) Analyze the graph of a linear function to find solutions and intercepts. SPI 0806.3.7 Identify, compare and contrast functions as linear or nonlinear. Distance, Rate and Time Word Problems w/Answers Graphing non-linear functions Graphing Equations - Nonlinear Functions Lesson included handouts Linear versus Nonlinear Futures Channel: Linear Equations and Functions Contains several activities with video clips of skill applications Vocabulary Function, function table, independent variable, dependent variable, linear function, continuous data, discrete data, nonlinear function, quadratic function, cubic function, exponential function	0806.3.13 (EE.8.8.b) Represent situations and solve real-world problems using symbolic algebra. 0806.3.12 Understand how rates of change of nonlinear functions contrast with constant rates of change of linear functions. Rate of Change: Connecting Slope to Real Life 0806.3.10 Distinguish quadratic and exponential functions as nonlinear using a graph and/or a table of values. Exponential Functions Lesson plan Graphing Exponential Functions Quizzes you must register to access quizzes Comparing Linear and Nonlinear Functions Nonlinear Functions - Using Tables ppt Linear Equations Lesson Lesson plan with activities Exploring Linear, Exponential and Quadratic Functions Guiding Question(s): How do you solve problems involving rate/distance/time What information is needed to determine if a function is linear or nonlinear?	Glencoe TN Math Connects Course 3 Ch. 5 Lessons 3A p. 299, 3B p.300, 3C p. 306, 4A p. 314, 4B p320, 4C p. 324 Routines/Activities - 5-Minute Check - Spiral Review pp. 305, 311, 319 - H.O.T. Problems pp. 304, 310, 318, 322 - Test Practice Questions pp. 305, 311, 319, 323 - PSI Problem Solving Investigation - Chapter Study Guide \& Review pp.326-329 - Hands-On Activity Tools \& Resources, p. 20 - Quick Review Math Handbook, pp. 292-293 - Foldables - Chapter Resource Masters	- Are You Ready for the Chapter? pp. 266 - Stop and Reflect pp. 280, 297, 311, 325 - Self Check Quiz - Mid-Chapter Check p. 298 - Lesson Quizzes (CRM) - Practice Chapter Test p. 330 - Preparing for Standardized Tests p. 331 - Test Practice p. 332 - Chapter Test CRM - Mastering TCAP Workbook practice by SPI Sample TCAP Question(s) SPI 0806.1.1 Sample TCAP Questions SPI 0806.3.7 Sample TCAP Questions SPI 0806.3.5 Sample TCAP Questions SPI 0806.3.7 1. Which function is nonlinear? A. $F(x)=5$ B. $F(x)=3 x$ C. $F(x)-5 x^{2}-2$ D. $F(x)=-2 x+3$ 2. Given $4 x+2 y^{3}=5+y$ Which term identifies this equation as nonlinear? A. $4 x$ B. $2 y^{3}$ C. 5 D. y	Intervention: - Stanford Math (90 minutes/week) - Reteach Masters (Chapter Resource Masters) - Response to Intervention(TE) p. 266A - Differentiated Instruction Options (TE) p.267c, 281c, 299c, 314c - Quick Checks (TE) pp.269, 274, 280, 286, 291, 297, 305, 311, 319, 323 - Destination Math Enrichment: - Stanford Math (90 minutes/week) - Enrichment Masters (Chapter Resource Masters) - Differentiated Instruction Options (TE) p.267c, 281c, 299c, 314C - Quick Checks (TE) pp.269, 274, 280, 286, 291, 297, 305, 311, 319, 323 - .Destination Math	Teachers Edition CD Graphing Calculators Destination Math Examview Pro Stanford Math Browser Publishers Website: http://connectED.mcgraw-hill.com NCTM Website: http://illuminations.nctm.org www.internet4classrooms.com www.tnelc.org www.education.ti.com Interactive Manipulatives: http://nlvm.usu.edu/ STEM Resources: http://www.stemsources.com Informational Math Site (Power Points/Games) http://jc- schools.net/index.html http://softschools.com www.brightstorm.com http://exchange.smarttech.com www.discoveryeducation.com www.insidemathematics.org

First Nine Weeks Instructional Map
DRAFT

Subject Pre-algebra
Grade

GLE 0806.3.4 (F.8.2, F.8.3) Translate among verbal, tabular, graphical and algebraic representations of linear functions. GLE 0806.3.5 (F.8.4) Use slope to analyze situations and solve problems.

Knowledge and Skills	Checks for Understanding \& Guiding Question(s)	Resources \& Instructional Practices	Assessments	Differentiated Instruction	Technology \& Additional Web-based Resources
Weeks 4-6 SPI 0806.3.4 (F.8.2, F.8.3) Translate between various representations of a linear function. Representations of Linear Functions Representations of Linear Functions Lesson Download lesson Math Readiness Project: Linear Functions choose appropriate activity SPI 0806.3.5 (F.8.4 , F.8.5) Determine the slope of a line from an equation, two given points, a table or a graph. Determine Slope from a Graph SPI 0806.3.6 (EE.8.8.a) Analyze the graph of a linear function to find solutions and intercepts. Solutions and Intercepts of Linear Functions NCTM Illuminations: Growth Rate Graphing Functions Graphing tutorials for various functions Vocabulary Linear relationship, constant rate of change, slope, rise, run, qualitative graph, direct variation, constant of variation, slope-intercept form, y-intercept, boundary, half-plane, standard form, x-intercept	0806.3.6 (F.8.4) Identify x-and y-intercepts and slope of linear equations from an equation, graph or table. Using the X and Y Intercept to Graph Linear Equations Finding the X and Y Intercept to Graph Linear Equations includes 10 lessons 0806.3.7 Analyze situations and solve problems involving constant rate of change Linear versus Nonlinear Lesson plan with materials and strategies 0806.3.8 Recognize a proportion as a special case of a linear equation and understand that the constant of proportionality is the slope, and the resulting graph is a line through the origin. Arcademic Skill Builders - Ditt Bike Proportions Game Guiding Question(s): How can you determine the slope of a line from an equation, two given points or a graph? How does slope represent the relationship between two variables? What is the importance of using the slope and y-intercept to graph and write a linear equation?	Glencoe Math TN Connects Course 3 Ch. 6 Lessons 1A p. 337, 1 B p. 343, 1C p. 344, 1D p. 350, 1E p. 351, 2A p. 357, 2B p. 363, 2C p. 367 Routines/Activities - 5-Minute Check - Spiral Review pp. 356, 366 - H.O.T. Problems pp. 342, 348, 355, 361, 366 - Test Practice p. 34, 349, 356, 362, 366 - PSI Problem Solving Investigation - Chapter Study Guide \& Review pp.384-387 - Hands-On Activity Tools \& Resources, p. 20; Writing Linear Equations, p. 135 - Quick Review Math Handbook, pp. 279, 295-298, 306-307, 298-304, 299 - Foldables - Chapter Resource Masters Qualitative Graphs This set of problems involves qualitative graphs, representations that focus on the important general features of a situation. Discuss them with students. TI Classroom Activities: Identifying Qualitative Graphs How to Find the Slope of a Line You may use the lesson as a whole group activity.	- Are You Ready for the Chapter? P. 336 - Stop and Reflect pp. 356, 368, 379 - Self Check Quiz - Mid-Chapter Check p. 369 - Lesson Quizzes (CRM) - Practice Chapter Test p. 388 - Preparing for Standardized Tests p. 389 - Test Practice p. 390 - Chapter Test CRM - Mastering TCAP Workbook practice by SPI Linear and Non-Linear Equations Online quiz for review Sample TCAP Questions SPI 0806.1.2 Graphing Linear Functions Practice Problems You may review the problems provided for lesson openers or whole group dialogue. Sample TCAP Questions SPI 0806.3.4 Sample TCAP Questions SPI 0806.3.6	Intervention: - Stanford Math (90 minutes/week) - Reteach Masters (Chapter Resource Masters) - Response to Intervention(TE) p. 336A - Differentiated Instruction Options (TE) p.337c, 357c, 370c - Quick Checks (TE) pp.342, 349, 356, 362, 366, 371, 377, 381 - Destination Math Enrichment: - Stanford Math (90 minutes/week) - Enrichment Masters (Chapter Resource Masters) - Differentiated Instruction Options (TE) p.337c, 357c, 370c - Quick Checks (TE) pp.342, $349,356,362,366,371,377$, 381 - .Destination Math	Teachers Edition CD Graphing Calculators Destination Math Examview Pro Stanford Math Browser Publishers Website: http://connectED.mcgraw- hill.com NCTM Website: http://illuminations.nctm.org www.internet4classrooms.com www.tnelc.org www.education.ti.com Interactive Manipulatives: http://nlvm.usu.edul STEM Resources: http://www.stemsources.com Informational Math Site (Power Points/Games) http://jcschools.net/index.html http://softschools.com www.brightstorm.com http://exchange.smarttech.com www.discoveryeducation.com www.insidemathematics.org

First Nine Weeks Instructional Map

Common Core Focus Standards

The remainder of this quarter will address the Expressions and Equations and Function CCSS focus standards for grade $\mathbf{8}$ mathematics. In preparation for the CRA assessments tasks and lessons have been included to better engage students.

Expressions and Equations

Understand the connections between proportional relationships, lines, and linear equations.

8.EE.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.
8.EE.6. Use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane; derive the equation $y=m x$ for a line through the origin and the equation $y=m x+b$ for a line intercepting the vertical axis at b .

Functions

Define, evaluate, and compare functions.
8.F.1. Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. 1
8.F.2. Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
8.F. 3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.

First Nine Weeks Instructional Map

Expressions and Equations (EE)
Understand the connections between proportional relationships, lines, and linear equations

Standards	Mathematical Practices	Explanations and Examples	Instructional Resources
Students are expected to:			
8.EE.5. Graph proportional relationships, interpreting the unit rate as the slope of the graph. Compare two different proportional relationships represented in different ways. For example, compare a distance-time graph to a distance-time equation to determine which of two moving objects has greater speed.	8.MP.1. Make sense of problems and persevere in solving them. 8.MP.2. Reason abstractly and quantitatively. 8.MP.3. Construct viable arguments and critique the reasoning of others. 8.MP.4. Model with mathematics. 8.MP.5. Use appropriate tools strategically. 8.MP.6. Attend to precision. 8.MP.7. Look for and make use of structure. 8.MP.8. Look for and express regularity in repeated reasoning.	Using graphs of experiences that are familiar to students increases accessibility and supports understanding and interpretation of proportional relationship. Students are expected to both sketch and interpret graphs. Example: - Compare the scenarios to determine which represents a greater speed. Include a description of each scenario including the unit rates in your explanation. Scenario 1: Traveling Time Scenario 2: $y=50 x$ x is time in hours y is distance in miles	Math Connects CCSS Extra Lessons (8.EE) Lesson 4: Investigating Linear Equations p. 784 (Located in Electronic TE CCSS Link) Graphical Representation of Time and Distance Lines and Linear Equations Lesson Bike Ride: Apprentice Level Task Journey: Apprentice Level Task Shelves: Apprentice Level Task Cog Railway

First Nine Weeks Instructional Map

DRAFT

Subject Pre-algebra

Grade 8

Expressions and Equations (EE)
Understand the connections between proportional relationships, lines, and linear equations

Standards	Mathematical Practices	Explanations and Examples				Instructional Resources
Students are expected to:						
8.EE.6. Use similar triangles to explain why the slope m is the same between any two distinct points on a nonvertical line in the coordinate plane; derive the equation $y=$ $m x$ for a line through the origin and the equation $y=$ $m x+b$ for a line intercepting the vertical axis at b.		Example: - Explain why $\triangle A C B$ is similar to $\triangle D F E$, and deduce that $\overline{A B}$ has the same slope as $\overline{B E}$. Express each line as an equation. Slope and y intercept equations in Graphs, Tables, Stories, Equations				Youtube Lesson: Similar Triangles and Slope Bike Ride: Apprentice Level Task Journey: Apprentice Level Task Shelves: Apprentice Level Task

First Nine Weeks Instructional Map

DRAFT

Subject Pre-algebra

Grade 8

Functions
 Define, evaluate, and compare functions.

Standards
Students are expected to:
8.F. 1 Understand that a

Explanations and Examples			
What is a function?			
Three main parts of a function:	Input, Relationship, Output: Example: $y=3 x$		
	Input (x)	Relationship	Output (y)
	1	times 3	3
	4	times 3	12
	10	times 3	30

Instructional Resources

Interpreting Distance-Time Graphs Lesson
Graphical Representation of Time and Distance
Linear Graphs
Functions: Short Tasks

Function Names: Functions can be named anything. In books, we most frequently see f " or " g " as names. Examples:

- $f(x)=3 x$ means "a function f with input (x) " and "you multiply the input by 3 " for the output
- $g(x)=2 x+1$ means "a function g with input (x) " and "you multiply the input by 2 and add 1 " for the output
- $h(x)=x^{2}$ means "a function h with input (x)" and "you square the input" to get the output

Sometimes there is no function name and you will see $y=3 x$, as in the table above. There is still input, output, and a relationship that assigns each input. Remember x is just the variable-name for the input-it could be q or r or m etc.

Formal Definition of a Function: A function relates each element of an input set with exactly one element of an output set. - "...each element.." means that every element in x (input) is related to a unique element in y (output) \quad exactly one..." means that the function will not output more than 1 result for a given input. You can have ONLY ONE Y VALUE for each

$\begin{aligned} & \text { This is NOT a function } \\ & \text { (two points with } \mathrm{y} \text { values for the } \\ & \text { same } \mathrm{x} \text { value) } \end{aligned}$	$\begin{gathered} \text { This is a function- } \\ \text { (only one y value for each } x \text { value) } \\ \text { USE VERTICAL LINE TEST* } \end{gathered}$	This is NOT a function (two points with y values for the same x value) USE VERTICAL LINE TEST*	This is a function- (only one y value for each x value) (functions can also be discrete-not contin
$\begin{aligned} & \{(7,12),(6,9),(7,8),(4,1)\} \\ & \{(-2,5),(-2,6),(-2,7)\} \end{aligned}$			

(Definition of Function: www. mathisfun. com/sets/function htmll)

First Nine Weeks Instructional Map

8.F. 2 Compare properties of two functions each represented in a different way (algebraically,
graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.

Furction Representataions: Stories, Tables, Graphs, Equations

 able to work interchangeably among those representations. They will need to...- Describe increasing cecreasing paterns
- Compare rates of change from the same or differentreppresentations
- Wirte equations from real life situations, from data, from graphs
- Create functions from real life examples-use all forms of feppresentations create the table, graph, equation and prediction.'

1. Inform students from the beginning about this final assessment item.

NOTE: In the study of Fwuctions, studentss must represent the functions usilg differeent representataions (tables, graphs, eqquations) and be

The definitive assessmentitem for Functions in 8 8th $^{\text {grade math: "Describe a situation from real life which involvesa mathematical function. Then }}$
2. Students should have extensive experience with real life problem situations (please refer to suggested lessons or assessment tasks on the wordpress ite hitp://middlemathcess.wordpress. com $/$ Sth-grade-math).

Other Instuctional examples

1. Write an equationdescribing the following situations:

- Jane has $\$ 20$. She saves $\$ 1.50$ each week. How much money does she have in any given week
- Kris has edited 200 pagas so far in his career. He can edit 8 pages per day. How many pages will he have edited in the fiturue?
- Leah is a ther neighbor'shouse 2 miles from her house. Sheruns toward her house at a rate of $1 / 10$ of a mile each minute. How far is she from her houseat any given time? When will she reach her house?

2. Describe the following gituations as increasing or decreasing, and linear or nonlinear

- Mikehas S25. He saves \$11 each week.
- Nettie has $\$ 2$. She doubles her money each week
- Paul has $\$ 100$. He spends Si each day.

Subject Pre-algebra

Grade

Math Connects CCSS Extra Lessons

Lesson 5: Compare Properties of Functions
p. 785
(Located in Electronic TE CCSS Link)
Lines and Linear Equations Lesson

Function Machines

Battery Charging Equations from a table

First Nine Weeks Instructional Map

DRAFT

Subject Pre-algebra

Grade 8

	Compare the two linear functions listed below and determine which equation represents a greater rate of change. Function 2: The function whose input x and output y are related by $y=3 x+7$ Compare the two linear functions listed below and determine which has a negative slope. Function 1: Gift Card Samantha starts with $\$ 20$ on a gift card for the book store. She spends $\$ 3.50$ per week to buy a magazine. Let y be the amount remaining as a function of the number of weeks. Function 2: The school bookstore rents graphing calculators for $\$ 5$ per month. It also collects a non-refundable fee of $\$ 10.00$ for the school year. Write the rule for the total cost (c) of renting a calculator as a function of the number of months (m). Solution: Function 1 is an example of a function whose graph has negative slope. Samantha starts with $\$ 20$ and spends money each week. The amount of money left on the gift card decreases each week. The graph has a negative slope of -3.5 , which is the amount the gift card balance decreases with Samantha's weekly magazine purchase. Function 2 is an example of a function whose graph has positive slope. Students pay a yearly nonrefundable fee for renting the calculator and pay $\$ 5$ for each month they rent the calculator. This function has a positive slope of 5 which is the amount of the monthly rental fee. An equation for Example 2 could be $c=5 m+10$.

First Nine Weeks Instructional Map

$y=m x+b$ as defining graph is a straight line; give examples of functions that are not linear. For example, the function $A=s 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1)$, $(2,4)$ and $(3,9)$, which are not on a straight line.
\qquad

Subject Pre-algebra

Grade 8

First Nine Weeks Instructional Map

Subject Pre-algebra

DRAFT

Common Core State Standards Crosswalk Correlations

F.8.1 Understand that a function is a rule that assigns to each input exactly one output. The graph of a function is the set of ordered pairs consisting of an input and the corresponding output. (Function notation is not required in Grade)
F.8.2 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). For example, given a linear function represented by a table of values and a linear function represented by an algebraic expression, determine which function has the greater rate of change.
F.8.3 Interpret the equation $y=m x+b$ as defining a linear function, whose graph is a straight line; give examples of functions that are not linear. For example, the function $A=s^{\wedge} 2$ giving the area of a square as a function of its side length is not linear because its graph contains the points $(1,1),(2,4)$ and $(3,9)$, which are not on a straight line.
F.8.4 Construct a function to model a linear relationship between two quantities. Determine the rate of change and initial value of the function from a description of a relationship or from two (x, y) values, including reading these from a table or from a graph. Interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.
F.8.5 Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

EE.8.8 Analyze and solve pairs of simultaneous linear equations.
EE.8.8.a Understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs, because points of intersection satisfy both equations simultaneously.
EE.8.8.b Solve systems of two linear equations in two variables algebraically, and estimate solutions by graphing the equations. Solve simple cases by inspection. For example, $3 x+2 y=5$ and $3 x+2 y=6$ have no solution because $3 x+2 y$ cannot simultaneously be 5 and 6 .
G.8.1 Verify experimentally the properties of rotations, reflections, and translations:
-- a. Lines are taken to lines, and line segments to line segments of the same length.
-- b. Angles are taken to angles of the same measure.
-- c. Parallel lines are taken to parallel lines.
G.8.2 Understand congruence and similarity using physical models, transparencies, or geometry software. Understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations; given two congruent figures, describe a sequence that exhibits the congruence between them.

